首页> 外文OA文献 >Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography for Sensor Nodes
【2h】

Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography for Sensor Nodes

机译:用于传感器节点的NIsT兼容椭圆曲线密码的高效实现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we present a highly-optimized implementation of standards-compliant Elliptic Curve Cryptography (ECC) for wireless sensor nodes and similar devices featuring an 8-bit AVR processor. The field arithmetic is written in Assembly language and optimized for the 192-bit NIST-specified prime p = 2^192 - 2^64 - 1, while the group arithmetic (i.e. point addition and doubling) is programmed in ANSI C. One of our contributions is a novel lazy doubling method for multi-precision squaring which provides better performance than any of the previously-proposed squaring techniques. Based on our highly optimized arithmetic library for the 192-bit NIST prime, we achieve record-setting execution times for scalar multiplication (with both fixed and arbitrary points) as well as multiple scalar multiplication. Experimental results, obtained on an AVR ATmega128 processor, show that the two scalar multiplications of ephemeral Elliptic Curve Diffie-Hellman (ECDH) key exchange can be executed in 1.75 s altogether (at a clock frequency of 7.37 MHz) and consume an energy of some 42 mJ. The generation and verification of an ECDSA signature requires roughly 1.91 s and costs 46 mJ at the same clock frequency. Our results significantly improve the state-of-the-art in ECDH and ECDSA computation on the P-192 curve, outperforming the previous best implementations in the literature by a factor of 1.35 and 2.33, respectively. We also protected the field arithmetic and algorithms for scalar multiplication against side-channel attacks, especially Simple Power Analysis (SPA).
机译:在本文中,我们为无线传感器节点和具有8位AVR处理器的类似设备提供了符合标准的椭圆曲线密码术(ECC)的高度优化实现。现场算术以汇编语言编写,并针对192位NIST指定的素数p = 2 ^ 192-2 ^ 64-1进行了优化,而组算术(即,点加法和加倍)是在ANSI C中编程的。我们的贡献是一种用于多精度平方的新颖的惰性加倍方法,它比以前提出的任何平方技术提供了更好的性能。基于针对192位NIST素数的高度优化的算法库,我们实现了标量乘法(具有固定点和任意点)以及多标量乘法的创纪录执行时间。在AVR ATmega128处理器上获得的实验结果表明,短暂的椭圆曲线Diffie-Hellman(ECDH)密钥交换的两个标量乘法可以一起在1.75 s内执行(在7.37 MHz的时钟频率下),并消耗一些能量。 42兆焦耳。在相同的时钟频率下,ECDSA签名的生成和验证大约需要1.91 s,成本为46 mJ。我们的结果显着改善了PDH曲线上ECDH和ECDSA计算的最新水平,分别比文献中先前的最佳实现高出1.35和2.33倍。我们还保护了标量乘法的现场算术和算法免受侧信道攻击,尤其是简单功率分析(SPA)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号